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Abstract
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whether exogenous shocks to the observable component satisfy the exclusion restriction,
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component. Using data from the Health Retirement Study, we find that polygenic
scores satisfy the exclusion restriction and are relevant instruments, and cannot reject
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1 Introduction

Assortative mating. Standard models of assortative mating tend to predict perfect

assortativeness, while the data show imperfect assortativeness. Deviations from perfect

assortative mating can be accounted for by introducing randomness into the matching

process, measurement error, simultaneity bias or extending the relevant dimensions in which

matching takes place, to include physical attributes or personality traits (Chiappori et al.,

2012; Choo and Siow, 2006; Dupuy and Galichon, 2014; Galichon and Salanié, 2015; Siow,

2015). In practice, we may expect different sources of biases at the same time, so that

whether assortative mating is under or over-estimated is, in the end, an empirical question.

Even if our interest is the statistical measurement of assortative mating and quasi-

experimental variation in the attributes of the two sides of the market is available, a stylized

matching model may give us leverage in the empirical investigation of assortative mating.

Specifically, a parsimonious model can provide the necessary structure to investigate the

validity of exclusion restrictions, which cannot be tested in standard instrumental variables

settings without the additional structure provided by a model. Chiappori and Salanié

(2016) emphasize that, if one is willing to provide answers to questions on the causes and

consequences of educational homogamy, a theoretical framework is necessary given the two-

sided nature of the marriage market.

This paper and its main findings. We present a parsimonious stochastic linear bi-

dimensional matching model, where individuals match on an index of marital attractiveness,

so that the matching is de facto one-dimensional as in Chiappori et al. (2012) and Hitsch

et al. (2010), but attractiveness depends on two attributes: education and a non-education

component, which is a linear combination of attributes other than education which can be

correlated with education, for instance personality or physical attractiveness. Given the

likely correlation between education and the non-education component, the chief issue for

the econometrician is how to estimate assortative mating on education without observing

the non-education component. If a valid instrumental variable were available, one could
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investigate assortative mating on education by using the part of education uncorrelated

with the non-education component.

We propose a potentially valid instrument for education, a polygenic score for education

–i.e., a single quantitative measure of genetic predisposition based on genetic variants present

in the entire genome (see Plomin et al., 2009)– but allow the score to be correlated with

both the education and the non-education components, so that the exclusion restriction

can be violated. Under our bi-dimensional linear model, the exclusion restriction will be

violated when two conditions hold at the same time: (1) the polygenic score for education

is correlated with the non-education component, and (2) the non-education component is

relevant for overall marital attractiveness. Crucially, the exclusion restriction is testable

under the (linear) structure provided by our parsimonious model.

We construct a polygenic score to predict educational attainment of married men and

women using data from the Health and Retirement Study (HRS), building upon the recent

findings from a large scale genome-wide association study (GWAS) of educational attain-

ment (Okbay et al., 2016). Rather than focusing on a limited number of genetic variants,

the polygenic scores (PSs) use the entire information in the DNA (or a large proportion

of it) to construct a measure of genetic predisposition to higher educational attainment

(Conley et al., 2015; Ward et al., 2014; Domingue et al., 2014; Plomin et al., 2009).

While genes (and polygenic scores) are considered to be randomly assigned at concep-

tion (Mendelian randomization), at least after accounting for population stratification, this

is a necessary but not a sufficient condition to use them as valid instrumental variables.

Polygenic scores for education may affect spousal education above and beyond their effects

on own education, that is, polygenic scores for education may affect the own-non education

component, and hence violate the exclusion restriction. In general, the exclusion restriction

is not testable, however, this can be examined in our context after imposing the structure

provided by our linear bi-dimensional stochastic matching model. To the best of our knowl-

edge, this is the first study to test the validity of the exclusion restriction of polygenic scores
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for education in a marital matching model.

Our empirical findings show that the validity of the exclusion restriction cannot be

rejected for either the male or female polygenic scores of education. We then proceed to use

the polygenic scores for education as instrumental variables for education. Specifically, we

use spousal PSs as instrumental variables for spousal education, controlling for own PS, to

reassess assortative mating in the marriage market. Both polygenic scores of education are

relevant instruments. The ratios of the estimated OLS-IV coefficients on the husband’s year

of education and the husband’s college degree indicator are 0.98 and 0.90, respectively. The

ratios of the estimated OLS-IV coefficients on the wife’s year of education and the wife’s

college degree indicator are both 0.70. Interestingly, we cannot reject the equality of OLS

and IV returns to own education in the marriage market in terms of spousal’s education.

This finding suggests that previous studies based on OLS analyses are indeed informative

about assortative mating on education. Incidentally, a similar conclusion has been reached

by labor economists regarding the estimation of the returns to education in the labor market

(Angrist and Krueger, 1991).1

Taken at face value our results are consistent with two potential explanations: first, the

non-education component (e.g., physical attractiveness) is irrelevant for marital attractive-

ness, at least among the sample under analysis, that is, individuals who are on average

70 years old, who got married on average 40 years ago and have been married to each

other ever since, and who are still alive (healthier); second, the non-education component

(e.g., physical attractiveness) is uncorrelated with education, at least among our highly

selected group of couples. Whatever the reason is, the bottom line is that for a group of

individuals for whom education is (perhaps) the most important attribute on the marriage

market (older generations), assortative mating on education can be assessed with standard

regression techniques.

Traditionally, the purpose of marriage was division of labor and child rearing rather than
1If anything, returns to education in the labor market seem to be underestimated when using OLS rather

than IV (Card, 2001).
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an hedonic marriage and affinity on personality (Becker, 1973; Lundberg, 2012). While it

seems plausible to assume that in traditional marriages education was the main attribute

driving marital surplus, the sexual revolution transformed the marriage market and its

institution toward hedonic marriages (Stevenson and Wolfers, 2007). Thus, we would expect

to find different returns in the marriage market using OLS and genetic-IV on a sample of

recently first-married couples. In other words, our empirical findings are only internally

valid, but the parsimonious approach combining genes with a structural model described in

this paper is externally valid, and hopefully will stimulate future research.

Our paper shows how new available data (such as genetic data) can be used in com-

bination of stylized matching models to make progress on the measurement of assortative

mating. The actual quantification of assortative mating on education in the marriage market

is an important step forward in economic analysis and public policy, if only because assorta-

tive mating may have direct implications for the transmission of socioeconomic status and

inequality across generations (Currie, 2011; Fernandez and Rogerson, 2001).

Contributions and related literature. Our approach provides a novel identifica-

tion strategy to investigate the degree of assortative mating in the marriage market, while

complementing recent research on genetic assortative mating. Assortative mating has been

studied in economics since the seminal work by Becker (1973). In particular, many social

scientists have documented a strong and increasing educational homogamy (e.g., Bruze,

2011; Chiappori et al., 2009; Greenwood et al., 2014; Schwartz and Mare, 2005). The very

recent work by Larsen et al. (2015) claims that using the variation in male educational

attainment induced by the WWII G.I. Bill may provide the most transparent identification

strategy to date. While theirs is a clever identification strategy, it only applies to one side

of the marriage market (men), and only exploits cohort variation. Earlier work had studied

the impact of male scarcity on marital assortative mating using the large shock that WWI

caused to the number of French men (Abramitzky et al., 2011), used quarter of birth as a

(weak) instrument for female education, or data on twins to assess assortative mating and
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how education is productive in marriage (Lefgren and McIntyre, 2006; Huang et al., 2009).

More generally an IV approach to instrument for market conditions, such as sex ratios, had

been used by Angrist (2002) and Charles and Luoh (2010), for instance.

There is also a literature on genetic assortativeness. Using data from the HRS, Domingue

et al. (2014) find that spouses are more genetically similar than two people chosen at random.

Guo et al. (2014) also find a positive similarity in genomic assortment in married couples

by using the HRS and the Framingham Heart study. Conley et al. (2016), however, show

that the increased level of assortative mating in education observed across birth cohorts

from 1920 to 1955 does not correspond to an increase in similarity at the genotypic level.

These articles use genetic information from large scale GWASs that are also the core of our

analysis. While these studies are instrumental for our analysis, our work departs from them,

if only because our focus is assortative mating on education, and not spousal resemblance

at the genotypic level.2

Our research also broadly speaks to the increasing “genoeconomics” literature that stud-

ies the genetic determinants of socioeconomic outcomes (Beauchamp et al., 2011; Benjamin

et al., 2007; Conley et al., 2014a). While a few studies in economics have used genome-wide

polygenic score as an instrumental variable (see also von Hinke Kessler Scholder et al., 2016;

Böckerman et al., 2016), we are the first to examine the validity of the exclusion restriction of

a genome-wide polygenic score. By combining the IV-genetic approach with a parsimonious

linear bi-dimensional stochastic matching model, we can test the validity of the exclusion

restriction, directly tackling the issue of pleiotropy, which in the context of genome-wide

scores leads to concerns about the number of potential pathways through which the score

could influence the outcome. Hence, our study breaks new ground by complementing and

expanding the economic literature using genes (or genetic markers) as instrumental vari-

ables (e.g., Cawley et al., 2011; Fletcher and Lehrer, 2011; Norton and Han, 2008; von Hinke

Kessler Scholder et al., 2011, 2013, 2014, 2016).
2On the genetic similarity of spouses see also Zou et al. (2015).
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Structure of the paper. The rest of the paper is organized as follows. Section 2

presents two stylized models of assortative mating –a one-dimensional deterministic linear

matching model, and a bi-dimensional stochastic linear matching model– and defines the

corresponding OLS and IV estimands. Section 3 defines the polygenic scores and the genetic

IV. Section 4 describes the data and the construction of the polygenic scores. Section 5

contains our empirical analysis. Finally, Section 6 concludes the paper.

2 Measuring Assortative Mating in Theory

2.1 A one-dimensional deterministic linear matching model

Consider two populations (men and women) of equal size, normalized to one. Agents

differ in their overall marital attractiveness: x is the female marital attractiveness index,

and y is the male marital attractiveness index. Without loss of generality, assume that

x ∼ U [a, b] (1)

y ∼ U [0, 1] (2)

where b > 1 and a > 0. Positive assortative mating (PAM) on marital attractiveness implies

that3

x− a
b− a

= y (3)

3Let the marital surplus be defined as h(x, y), and assume that h is twice differentiable. In a transferable
utility setting, super-modularity of the surplus function (i.e., hxy > 0) implies PAM. In a non-transferable
utility setting, if h is increasing in both x and y, then we have PAM.

6



Hence, we have the matching function

y = β0 + β1x (4)

where β0 = − a
b−a and β1 = 1

b−a . Thus, this model predicts perfect PAM on marital attrac-

tiveness

corr(y, x) =
cov(y, x)√

var(y)
√
var(x)

=
cov(β0 + β1x, x)√

var(β0 + β1x)
√
var(x)

=
β1var(x)

β1var(x)
= 1 (5)

If overall marital attractiveness in the marriage market is fully captured by educational

attainment, then this simple model predicts perfect PAM on education. Deviations from

perfect PAM on education can be accounted for by introducing randomness into the match-

ing process, or extending the relevant dimensions in which matching takes place (Chiappori

et al., 2012, forthcoming; Choo and Siow, 2006; Dupuy and Galichon, 2014; Galichon and

Salanié, 2015; Siow, 2015).

2.2 A bi-dimensional stochastic linear matching model

Stochastic matching functions. Suppose that the “stochastic” matching functions

are given by

y = α + βx+ vy (6)

and

x = α
′
+ β

′
y + vx (7)

where y is the male overall marital attractiveness index, x is the female overall marital

attractiveness index, both unobserved by the econometrician, and vy and vx are random
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components, which can be thought of as being reduced form representations of search fric-

tions.

Attractiveness indices. Let the overall marital attractiveness index be linear (Chiap-

pori et al., 2012; Hitsch et al., 2010) and bi-dimensional, where the two attributes at stake

are: E (education) and Ẽ (non-education), with Ẽ being unobservable to the econometri-

cian, and homogeneously assessed by each side of the market.4 More generally, Ẽ can be

thought of as being a linear combination of attributes other than education and that are

homogenously assessed in the population, for instance, physical attractiveness. Hence, the

female and male attractiveness indices can be written as

y = π0 + π1Ey + π2Ẽy + uy (8)

and

x = δ0 + δ1Ex + δ2Ẽx + ux (9)

where Ey is male education, Ẽy is the male non-education component and uy is a random

component (uncorrelated with both Ey and Ẽy). Ex, Ẽx and ux are similarly defined for

women.5 Crucially, the two components E and Ẽ are allowed to be correlated.

Education equations I. Substituting (8) and (9) into (6) we obtain the following

equation for the male educational attainment

Ey =
1

π1
(α + βδ0 − π0) +

1

π1
βδ1Ex +

1

π1
βδ2Ẽx −

1

π1
π2Ẽy +

1

π1
(βux + vy − uy) (10)

Similarly, substituting (8) and (9) into (7) we obtain the following equation for the female
4The issue of heterogeneous preferences in the marriage market has recently attracted attention. Chiap-

pori et al. (forthcoming) study bidimensional matching on education and smoking in the marriage market,
allowing for heterogeneous preferences in the population regarding the desirability of spousal smoking.

5Ẽx =
∑M

j wjẼx,j where wj is the weight of each non-educational attribute. Similarly for Ẽy.
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educational attainment

Ex =
1

δ1

(
α
′
+ β

′
π0 − δ0

)
+

1

δ1
β
′
π1Ey +

1

δ1
β
′
π2Ẽy −

1

δ1
δ2Ẽx +

1

δ1

(
β
′
uy + vx − ux

)
(11)

The parameters measuring assortative mating on education are

ρ =
βδ1
π1

(12)

and

ρ
′
=
β
′
π1
δ1

(13)

We can define our measure of assortative mating on education as
√
ρρ′ , which is the ge-

ometric mean of the two parameters. Incidentally,
√
ρρ′ =

√
ββ ′ , which is the geometric

mean of the two parameters measuring assortative mating on the unobservable index of

overall marital attractiveness. Hence, by measuring assortative mating on education (which

is observable) we can measure assortative mating on the index of attractiveness (which is

unobservable to us). However, given that we do not observe Ẽx and Ẽy, we cannot recover

ρ or ρ′ using OLS, since OLS will suffer from omitted variables bias. In order to be able to

recover ρ or ρ′ , we need additional information.

Auxiliary equations: Genes and educational attainment. Let z be a measure

of genetic predisposition to higher educational attainment: z is expected to be positively

correlated with E. Hence, we have the following auxiliary equations for male and female

education

Ey = θ0 + θ1zy + εy (14)
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and

Ex = µ0 + µ1zx + εx (15)

In addition, based on recent studies, z is allowed to be correlated with Ẽ. For example,

it has been shown that the polygenic score for education is associated with attention deficit

hyperactivity disorder (de Zeeuw et al., 2014). Hence, we have the following auxiliary

equations for the male and female non-education components

Ẽy = λ0 + λ1zy + ηy (16)

and

Ẽx = κ0 + κ1zx + ηx (17)

Education equations II. Substituting (16) and (17) into (10), we obtain a new equa-

tion for male education

Ey = α∗ + β∗Ex + γ∗zx + δ∗zy + u∗ (18)

where

α∗ =
α + βδ0 + βδ2κ0 − π0 − π2λ0

π1
(19)

β∗ =
βδ1
π1

(20)
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γ∗ =
βδ2κ1
π1

(21)

δ∗ = −π2λ1
π1

(22)

u∗ =
βux + vy − uy + βδ2ηx − π2ηy

π1
(23)

Similarly, substituting (16) and (17) into (11), we obtain a new equation for female

education

Ex = α
′∗ + β

′∗Ey + γ
′∗zx + δ

′∗zy + u
′∗ (24)

where

α
′∗ =

α
′
+ β

′
π0 + β

′
π2λ0 − δ0 − δ2κ0
δ1

(25)

β
′∗ =

β
′
π1
δ1

(26)

γ
′∗ = −δ2κ1

δ1
(27)

δ
′∗ =

β
′
π2λ1
δ1

(28)
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u
′∗ =

β
′
uy + vx − ux + β′π2ηy − δ2ηx

δ1
(29)

IV estimands. Can our measures of genetic predisposition (polygenic scores) of edu-

cation zx and zy be used as valid instrumental variables? In general, neither zx nor zy can

be used as instrumental variables for Ex and Ey, respectively, since zx appears in (18) as an

explanatory variable (zx affects Ey above and beyond its effect through Ex), and similarly

zy appears in (24) as an explanatory variable too (zy affects Ex above and beyond its effect

through Ey). Hence, as long as γ∗ 6= 0, zx does not satisfy the exclusion restriction and

cannot be used as an instrumental variable for Ex. Similarly, as long as δ′∗ 6= 0, zy does not

satisfy the exclusion restriction and cannot be used as an instrumental variable for Ey. In

general, the exclusion restriction is not falsifiable.6 However, under our structural assump-

tion, namely our bi-dimensional stochastic linear matching model, the exclusion restriction

can be tested. In particular, one can run equation (18) by OLS and test the following

hypothesis:

H0 : γ∗ = 0 ↔ zx satisfies the exclusion restriction

H1 : γ∗ 6= 0 ↔ zx does not satisfy the exclusion restriction
(33)

If we cannot reject H0, we can use zx as an instrumental variable for Ex to recover β∗.
6Consider the simple linear model:

y = a+ bx+ cw + e (30)

where w is unobserved. If we run the OLS regression

y = a+ bx+ dz + u (31)

where u = cw + e, then

dOLS = d+ c
cov(z, w)

var(z)
(32)

Thus, in general, without any additional structure, the exclusion restriction is not testable, since this OLS
regression suffers from omitted variable bias. In other words, dOLS will be different than zero even though
d = 0 as long as c 6= 0 and cov(z, w) 6= 0.
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Similarly, one can run equation (24) by OLS and test the following hypothesis:

H0 : δ
′∗ = 0 ↔ zy satisfies the exclusion restriction

H1 : δ
′∗ 6= 0 ↔ zy does not satisfy the exclusion restriction

(34)

If we cannot reject H0, we can use zy as an instrumental variable for Ey to recover β ′∗.

Note that in both cases the exclusion restriction can be satisfied because either the

polygenic score of education E is uncorrelated with the non-education component Ẽ (κ1 = 0

for zx and λ1 = 0 for zy), or attractiveness only depends on education E (δ2 = 0 (female non-

education is irrelevant) and π2 = 0 (male non-education is irrelevant)), or both. In practice,

we expect both κ1 6= 0 and λ1 6= 0, since the polygenic score for education is associated with

attention deficit hyperactivity disorder (de Zeeuw et al., 2014), amongst others, which may

be related to any (or many) of the attributes embedded into the non-education component.

These issues are covered in much more detail in Section 3 (pp. 19-20) when discussing the

exclusion restriction assumption. Our next step is thus to build a potentially valid genetic

IV.

3 Building a Potentially Valid Genetic IV

3.1 Polygenic Scores

Recent advances in molecular genetics have made it possible and relatively inexpensive

to measure millions of genetic variants in a single study. The most common type of genetic

variation among people is called single nucleotide polymorphism (SNP). SNPs are genetic

markers that have two variants called alleles. Since individuals inherit two copies for each

SNP, one from each parent, there are three possible outcomes: 0, 1 or 2 copies of a specific

allele. SNPs occur normally throughout a person’s DNA. Each SNP represents a difference

in a single DNA building block, called a nucleotide. For example, a SNP may indicate that,
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in a certain stretch of DNA, a nucleotide cytosine is replaced with the nucleotide thymine

among some individuals.

SNPs are usually indicated by their position in the DNA, their possible nucleotides

and by an identification number. They occur once in every 300 nucleotides on average,

which means there are roughly 10 million SNPs in the human genome. A large part of

current genetic research aims to identify the function of these genetic variants and their

relationship to different diseases. GWASs have been used to identify SNPs associated to

particular diseases or traits. A drawback of GWAS is that, given the polygenic nature of

human diseases and traits, most variants identified confer relatively small increments in risk,

and explain only a small proportion of heritability. A common solution is to use the results

from a GWAS and compile a polygenic score (PS) for a phenotype aggregating thousands

of SNPs across the genome and weighting them by the strength of their association.

There are two main reasons to use a PS to describe the genetic susceptibility to a trait in

social sciences (Belsky and Israel, 2014; Schmitz and Conley, forthcoming). First, complex

health outcomes or behaviors are usually highly polygenic, i.e., reflect the influence or

aggregate effect of many different genes (Visscher et al., 2008). PSs assume that individuals

fall somewhere on a continuum of genetic predisposition resulting from small contributions

from many genetic variants. Second, a single genetic variant has too small of an effect

in explaining complex phenotypes, i.e., no single gene produces a symptom or trait at a

detectable level, unless the sample size is extremely high.

A PS for individual i can be calculated as the sum of the allele counts aij (0, 1 or 2) for

each SNP j = 1, . . .M , multiplied by a weight wj:

PSi =
M∑
j=1

wjaij

A standard choice of weights is to use the association coefficients derived from a GWAS.

A common practice is to include SNPs based on their association strength (p-value). For
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instance, it is possible to include in the PS only SNPs that reach genome-wide significance

(5 × 10−8) or those that reach a less stringent level of association. The most inclusive

criterion is to include all the SNPs associations from a GWAS, weighting their effect using

their effect size. Since SNPs are not independent in the genome but their occurrence varies

according to a block structure called linkage disequilibrium (LD), PS are often calculated

using only SNPs that are independent to each other.7 These independent SNPs are then

used to calculate the score, avoiding possible bias due to oversampling DNA regions highly

genotyped. The range of possible values that a PS can take depends on the number of SNPs

included, tending to a normal distribution if the number of independent SNPs included in the

score is sufficiently high. For comparability purposes, we standardize a score by subtracting

its mean and dividing it by its standard deviation.

Using PSs rather than single genetic markers has several advantages. First, they are

“hypothesis-free” measures that do not require knowledge about the biological processes

involved. This is particularly important when the phenotype of interest is complex, i.e.,

influenced by a large number of genes, or when its biological mechanisms are not yet fully

understood (Belsky and Israel, 2014). Second, using a score, rather than single genes, is

a possible solution to overcome the low predictive power of single genes, especially for be-

havioral traits. For example, the top genome-wide significants SNP from the most recent

GWAS on educational attainment (Okbay et al., 2016) explains around 0.01% of the varia-

tion in years of schooling. A linear polygenic score from all measured SNPs explains 3.2% of

the same variable. Third, complete genome-wide association results are publicly available.

PSs can be calculated from consortia data for a range of phenotypes. The results published

by these consortia are based on a meta-analysis of a large number of cohort studies. The

predictive power of a polygenic score is inflated if the samples are not independent, i.e.,

the same sample was used in the original calculation of association results. For this reason,

it is common to use genetic association results from independent studies or to rerun the
7 To select independent SNPs we use a procedure called clumping that prevents that SNPs are highly

correlated (in linkage disequilibrium).
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association results excluding the cohort to which the score is applied, which is exactly how

we proceed.

Of course, there are also drawbacks in using PSs rather than single genetic markers.

First, the issue of pleiotropy (discussed in the next subsection), which in the context of

genome-wide scores leads to concerns about the number of potential pathways through

which the score could influence the outcome. Note, however, that our bi-dimensional model

allows us to tackle the issue of pleiotropy. Second, the issue of population stratification,

which refers to the situation in which there is a systematic relationship between the allele

frequency and the outcome of interest in different subgroups of the population, and that we

discuss in the next subsection. Finally, PSs are measured with measurement error (e.g., an

R2 < 0.05 for the education PS compared to heritability estimates of ∼ 0.4; Branigan et al.

(2013)).

3.2 Genetic IV

There is a growing literature both methodological and applied on the use of genetic

data as instrumental variables. The motivation for using a genetic instrumental variable

(IV) is the fact that individuals’ genotypes are randomly allocated at conception, such a

quasi-experimental design is called Mendelian randomization (Smith and Ebrahim, 2003).8

However, randomization, while necessary is not a sufficient condition to use genetic data as

valid instrumental variables.

There is a vast literature in statistics and epidemiology that focuses on methodological

aspects related to genetic IV (e.g., Burgess et al., 2015; Davies et al., 2015; Didelez and

Sheehan, 2007; Glymour et al., 2012; Kang et al., forthcoming; Lawlor et al., 2008; Sheehan

et al., 2008; Smith and Ebrahim, 2003). More recently, von Hinke Kessler Scholder et al.

(2016) carefully examine the conditions needed for genetic variants to be used as valid

instrumental variables with the aim of disseminating these conditions in the economics and
8See also von Hinke Kessler Scholder et al. (2011); Cawley et al. (2011); Taylor et al. (2014) for a

discussion about potential problems when exploiting Mendelian randomization as a genetic IV.
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social sciences literature. As discussed before, in our study we consider one PS that contains

all the information coming from the genetic markers of interest, instead of using one or few

genetic variants, and testing each allele separately.9 Hence, we improve on the existing

literature.10

A valid instrument must satisfy the following assumptions:

A1. Independence Assumption

A2. 1st Stage or Relevance Assumption

A3. Exclusion Restriction Assumption

A4. Monotonicity Assumption

The Independence Assumption (A1) requires that the polygenic score is as good

as randomly assigned. Even if genotypes are randomly assigned at conception (Mendelian

Randomization), the existence of Population Stratification can violate this assumption.

Population stratification refers to the situation in which there is a systematic relationship

between the allele frequency and the outcome of interest in different subgroups of the popu-

lation.11 Genetic similarity is often correlated with geographical proximity, because human

genetic diversity is the result of the history of population migration, ethnic admixture and
9Recent articles by von Hinke Kessler Scholder et al. (2016) and Böckerman et al. (2016) use polygenic

scores for body mass index as IV.
10 The existing literature in economics has studied: the effect of obesity or body fat mass on labor market

outcomes (Norton and Han, 2008), on medical costs (Cawley and Meyerhoefer, 2012), or on educational
attainment (von Hinke Kessler Scholder et al., 2012); the impact of poor health on academic performance
(Ding et al., 2009; Fletcher and Lehrer, 2011); the effect of cigarette smoking on BMI (Wehby et al.,
2012); the effect of alcohol exposure in utero on child academic achievement (von Hinke Kessler Scholder
et al., 2014); the effects of cigarette quitting during pregnancy on different health behaviors (Wehby et al.,
2013); the effect of child/adolescent height on different health and human capital outcomes (von Hinke
Kessler Scholder et al., 2013).

11Population stratification can lead to false positive associations, if variation in phenotype is due to
cultural differences among subpopulations rather than biological differences (Tian et al., 2008). Human
genetic diversity is the result of large-scale population movements, admixture, natural selection and genetic
drift (Botigue et al., 2013). Population stratification is strongly correlated with the geographical distribution
of individuals, since the number of common ancestors decreases exponentially with geographic distance. In
European rural population, an individual’s DNA can be used to infer their geographic origin with surprising
accuracy, often within a few hundred kilometres (Novembre et al., 2008).
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residential segregation. This may affect the marriage market since potential partners living

in the same geographical area are more likely to share common ancestry.12

It is possible to control for the non-random distribution of genes across populations

and account for differences in genetic structures within populations in three ways. First,

genome-wide analysis should be based on ethnic homogeneous populations, for example re-

stricting the analysis to individuals of European ancestry or controlling for geographical

origin. Second, only unrelated individuals should be included in the analysis to avoid family

structure or cryptic relatedness.13 Last, population structure can be approximated by run-

ning a principal components analysis (PCA) on the entire genotype and using the principal

components as control variables in the analysis (Price et al., 2006). PCA is the most com-

mon method used to control for population stratification in a GWAS. In our analysis, we

focus on a uniform group of individuals (White and Non-Hispanic), and control for region

of birth and for the first five genetic principal components in all our regressions.

The 1st Stage or Relevance Assumption (A2) requires that the spousal polygenic

score for education affects spousal education. While the use of one or few genetic variants

can be weakly associated with education (weak instrument problem), our polygenic score

is relevant and has been shown to robustly affect education (Rietveld et al., 2013; Okbay

et al., 2016). Moreover, the score predicts education differences between siblings (Rietveld

et al., 2014).

The Exclusion Restriction Assumption (A3) requires that the spousal polygenic

score for education affects own education only through spousal education. In common

genetic IV studies that investigate the effect of one individual’s treatment on the same

individual’s outcome, by using a genetic variant of his as instrument, the exclusion restriction

can be violated mainly in four situations (von Hinke Kessler Scholder et al., 2016): (i) when
12Genetic population stratification has a strong bearing in genetic spouse similarities as a consequence of

ethnic homogamy and geographic proximity. Friends and spouses are more genotypically similar than ran-
domly matched individuals even in ethnically homogeneous samples (Christakis and Fowler, 2014; Domingue
et al., 2014). Moreover, individuals who are genetically similar are more likely to have been reared in a
similar environment (urban versus non-urban setting), Conley et al. (2014b).

13Kinship in the sample that is not known to the investigator.
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parents’ behavior or preferences are affected by the genotype; (ii) when the mechanisms,

through which genetic variants affect the exposure variable, imply changes in behaviors or

preferences that affect directly the outcome; (iii) when the genetic instrument is correlated

with other genetic variants that affect the outcome (Linkage Disequilibrium);14 (iv) when

disruptive influences of the risk factor on the outcome are limited by foetal or post-natal

development processes (Canalization), which violates A3 because it results in an indirect

effect of the genotype on the outcome. In our matching context, the exclusion restriction

will be violated if two conditions hold at the same time:

Condition 1 The polygenic score of education z is predictive of the non-education compo-

nent Ẽ. Two main reasons can account for this. First, it could be that the polygenic

score for educational attainment leads to differential development across a variety of

different endophenotypes. For example, the polygenic score for education is associ-

ated with attention deficit hyperactivity disorder (de Zeeuw et al., 2014). Second, the

gene-environment correlation, which can be related to the four situations discussed

above.

Condition 2 The non-education attribute is relevant for overall attractiveness. This de-

pends on what is deemed to be attractive for each side of the marriage market, and

may be different by gender, ethnicity, period of time, and geography. For example,

among prime-age cohorts of white Americans, Chiappori et al. (2012) find that at-

tractiveness is multidimensional, depending on body mass index and socioeconomic

status for both men and women. However, matching patterns have changed in the

US over time (Stevenson and Wolfers, 2007). Whether education (fully) summarizes

attractiveness for one, both or none of the sides of the marriage market is thus an

empirical question.

Hence, zx will violate the exclusion restriction if and only if κ1 6= 0 (Condition 1) and δ2 6= 0

14 A similar situation occurs when one genetic variant has multiple functions (Pleitropy). In this case the
exclusion restriction is violated if the pleiotropic effect directly influences the outcomes.
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(Condition 2). By the same token, zy will violate the exclusion restriction if and only if

λ1 6= 0 and π2 6= 0. While the existing evidence suggests that Condition 1 is satisfied,

whether Condition 2 holds or is not known ex ante, and will depend on the particular

context and period of time being analyzed.

Finally, the Monotonicity Assumption (A4) requires that the spousal polygenic

score affects spousal education for every “spouse” in the same direction.15 However, with

homogeneous causal effects, as in our stylized matching model, the monotonicity assumption

is irrelevant.

4 Data Description

4.1 Health and Retirement Study

The data used in this paper come from the Health and Retirement Study (HRS), a

national panel survey representative of Americans over the age of 50 and their spouses,

interviewed every two years since 1992.16 The survey contains detailed socio-demographic

information. It consists of six cohorts: initial HRS cohort, born between 1931 and 1941

(first interviewed in 1992); the Study of Assets and Health Dynamics Among the Oldest

Old (AHEAD) cohort, born before 1924 (first interviewed in 1993); Children of Depression

(CODA) cohort, born between 1924 and 1930 (first interviewed in 1998); War Baby (WB)

cohort, born between 1942 and 1947 (first interviewed in 1998); Early Baby Boomer (EBB)

cohort, born between 1948 and 1953 (first interviewed in 2004) and Mid Baby Boomer

(MBB) cohort, born between 1954 and 1959 (first interviewed in 2010).

Between 2006 and 2008, the HRS genotyped 12,507 respondents who provided DNA

samples and signed consent. DNA samples were genotyped using the Illumina Human

Omni-2.5 Quad BeadChip, with coverage of approximately 2.5 million single nucleotide
15Chaisemartin (2015) shows that IV estimates a causal effect under a weaker condition than monotonicity.
16For the non-genetic data, we used the RAND HRS Data files, Version N.
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polymorphisms (SNPs). Current genetic data available for research also include imputation

of approximately 21 million DNA variants from the 1000Genomes Project.17 Following

recommendations of the genotyping center, we removed individuals with a genotyping rate

<95% and SNPs with minor allele frequency (MAF) less than 1%, with p-value less than

1×10−4 on the test for Hardy-Weinberg equilibrium, and with missing call rate greater than

5%. The resulting genetic sample includes 12,205 individuals and information for 8,391,857

genetic variants.

The survey interviews the respondents of eligible birth years at the time of their first

interview, as well as their married spouses or partners, regardless of age. It includes any

individual interviewed at least once. For our study we are interested in couples rather than

in the longitudinal structure of the data, we therefore build a cross-section. The original

sample (RAND HRS Data) contains 37,319 individuals: We focus on individuals for which

the genetic data are available after the quality control described above, 12,205 in total,

excluding 25,114 respondents from the original survey. We also restrict the sample to only

White respondents, excluding Black and Hispanic respondents (2,157 and 770 individuals,

respectively). We consider only heterosexual couples at their first marriage. In particular,

we exclude never married partners, people that are divorced or widowed at the time of the

first interview, and people that have been already married or widowed more than once when

entering the survey. We also drop respondents whose spouse has never been interviewed,

couples where the spousal age gap is ten years or more, couples in which at least one of the

two spouses has zero years of education, and couples in which one of the two spouses was

born outside the US or born in the US but with missing census division of origin.18 This

yields a working sample of 1,441 couples (2,882 individuals).

The main variables used in our empirical analysis are education and the polygenic scores
17For details on quality control of the HRS genetic data, please see here. Data are available for research

via the database of Genotypes and Phenotypes.
18Census Divisions are groupings of states and the District of Columbia that are subdivisions of the four

census regions (Northeast, Midwest, South, and West). There are nine Census divisions: New England,
Mid Atlantic, East North Central, West North Central, South Atlantic, East South Central, West South
Central, Mountain, Pacific.
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for education. Education is defined in two ways: the number of completed years of schooling,

and an indicator equal to 1 if the individual has a college degree (or above), and 0 otherwise.

We generated a polygenic score based on the most recent GWAS results on educational

attainment available (Okbay et al., 2016). The same polygenic score is used in the analysis

of years of education and college attainment, since the genetic correlation between the two

measures is very high, with the point estimate suggesting a perfect genetic correlation.

Since the HRS was part of the educational attainment consortium, we obtained the list

of association results calculated excluding the HRS from the meta-analysis from the Social

Science Genetic Association Consortium.19 Using these summary statistics, we constructed

linear polygenic scores weighted for their effect sizes in the meta-analysis. We constructed

the scores using the softwares PLINK and PRSice (Purcell et al., 2007; Euesden et al.,

2015).20 We generated 9 different scores, restricting the number of SNPs based on their

association p-values in the GWAS results. We started from a score that considered the

complete set of available SNPs (p-value<1) and then calculated the scores on a subset of

SNPs with the following p-value thresholds: 5×10−1; 5×10−2; 5×10−3; 5×10−4; 5×10−5; 5×

10−6; 5× 10−7; 5× 10−8. All the scores are clumped using the genotypic data as a reference

panel for Linkage Disequilibrium structure.

To ensure that the population stratification does not violate the Independence As-

sumption (A1), we focus our analysis on a homogeneous subpopulation, White non-

Hispanic, and we control for place of birth (Census division), year of birth, an indicator

variable if the place of birth differs between spouses, and the first five genetic principal

components for each individual using genome-wide principal components that function as

ancestry markers (Price et al., 2006).21

These population controls allow to analyze genotypic variants that are not driven by
19 Complete genetic association results on educational attainment are available here, see acknowledgments

for data conditions.
20Genetic data are based on best call genotypes imputed to 1000 Genome.
21The results from a principal components analysis (PCA) on the entire genotype are available from the

HRS genetic data.
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specific ethnicity. Moreover, our polygenic scores are based on genome-wide association

results on individuals of European ancestry and control for population structure. Once we

control for population structure and individual’s genes for education, it is safe to assume

that spousal genes for education are as good as randomly assigned. Finally, given that both

the PS for education and the principal components are generated regressors, the standard

errors in our regression analysis are bootstrapped. IV estimates are calculated using 2SLS.

After assessing the relevance of the 9 polygenic scores,22 and testing whether they satisfy

the exclusion restriction based on our linear bi-dimensional stochastic matching model, our

results (see Online Appendix) indicate that more inclusive scores (based on a less stringent

p-value) are more relevant (A2). However, by including a larger number of SNPs the ex-

clusion restriction assumption (A3) is more likely to be violated. Interestingly, the only

PSs satisfying both the relevance condition (A2) and the exclusion restriction (A3) for both

husbands and wives appears to be the PSs based on SNPs with a p-value<5 × 10−4, and

these are the ones used in our analysis.

5 Results

5.1 Descriptive statistics

Table 1 provides the basic descriptive statistics for our sample of husbands and wives.

These individuals were born between 1910 and 1961. On average, husbands –with 13.6

years of education– are more educated than their wives –with 13.4 years of education; 35%

of husbands have a college degree while 24% of wives do.

[Table 1 about here]

Table 2 shows the correlation matrix for years of education and PSs: the correlation

between husband’s and wife’s years of education is 0.568 (p-value<0.001), while that for
22p-value<1, p-value<5×10−1, p-value<5×10−2, p-value<5×10−3, p-value<5×10−4, p-value<5×10−5,

p-value<5× 10−6, p-value<5× 10−7, p-value<5× 10−8
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their PSs for education is 0.066 (p-value<0.001). If anything, this indicates that there is

both positive assortative mating on education and on PSs for education, but that the former

is much stronger than the latter.

[Table 2 about here]

5.2 OLS versus IV estimates

Table 3 contains the first results regarding assortative mating on education. The first

three columns display OLS estimates of regressions of wife’s years of education on the

husband’s years of education. Column (2) adds the polygenic score (PS) for wife’s education,

and column (3) controls for both spouses’ PSs. Column (1) shows that the point estimate

of the coefficient on husband’s education is 0.451. Once the wife’s genetic score is accounted

for, the point estimate decreases from 0.451 to 0.444, column (2). The coefficient does not

change when adding both PSs, column (3). Note that column (3) displays the estimation

of the regression equation (24) in our stochastic linear bi-dimensional matching model, and

hence it allows us to test whether zy satisfies the exclusion restriction. According to the

estimates in this column, we cannot reject δ′∗ = 0: the point estimate is 0.004 (SE = 0.054).

A similar qualitative picture emerges in the last three columns, (4), (5) and (6), where we

replace years of education with a college degree (or above) indicator.

[Table 3 about here]

In Table 4 we run the same analysis as in Table 3 but now the husband’s education is

the dependent variable and the wife’s education is the main explanatory variable. Overall

the magnitude of the coefficients is larger than in Table 3, and we find evidence that zx

satisfies the exclusion restriction.

[Table 4 about here]
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The findings in Tables 3 and 4 suggest that the PSs for education satisfy the exclusion

restriction.

Table 5 begins with our instrumental variable analysis. The table contains two blocks

of regressions, columns (1)-(3) for years of education, and columns (4)-(6) for college degree

(or above). In column (1) we analyze whether the husband’s PS satisfies the instrument

relevance condition: the F -statistic for the husband’s PS being irrelevant is 42.36, beyond

the “rule of thumb” of 10 (Staiger and Stock, 1997; Stock and Yogo, 2005). Column (2)

shows the reduced-form: interestingly, the role of the husband’s PS is more than half that

of the own PS. Finally, column (3) assesses assortative mating on years of education using

2SLS: the point estimate of the coefficient on husband’s years of education is 0.451 (SE =

0.126), very similar to 0.444 (SE = 0.022), the point estimate obtained using OLS in Table

3. Looking at columns (4)-(6), we find similar results: the instrument appears to be relevant

for college degree (44.25), the role of the husband’s PS is more than half that of the own PS,

and the 2SLS point estimate is 0.474 (SE = 0.136), which is similar to 0.427 (SE = 0.024)

the OLS point estimate in Table 3. Both of the Hausman tests at the bottom of columns

(3) and (6) cannot reject that the OLS and IV estimands are the same.

[Table 5 about here]

While Table 5 contains the IV (2SLS) analysis corresponding to the OLS analysis of

Table 3, Table 6 displays the IV (2SLS) analysis corresponding to Table 4. The IV point

estimate of the coefficient on wife’s years of education is 0.925 (SE = 0.232) versus the

OLS point estimate 0.643 (SE = 0.028), while the point estimate of the coefficient on wife’s

college is 0.759 (SE = 0.269) versus the OLS point estimate of 0.532 (SE = 0.026). The F -

statistics for the wife’s education PS are respectively 31.21 and 21.04. Both of the Hausman

tests at the bottom of columns (3) and (6) cannot reject that the OLS and IV estimands

are the same.

[Table 6 about here]
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5.3 Discussion

Taken at face value our results are consistent with two potential explanations: first, the

non-education component (e.g., physical attractiveness) is irrelevant for marital attractive-

ness, at least among the sample under analysis, that is, individuals who are on average

70 years old, who got married on average 40 years ago and have been married to each

other ever since, and who are still alive (healthier); second, the non-education component

(e.g., physical attractiveness) is uncorrelated with education, at least among our highly

selected group of couples. Whatever the reason is, the bottom line is that for a group of

individuals for whom education is (perhaps) the most important attribute on the marriage

market (older generations), assortative mating on education can be assessed with standard

regression techniques.

Traditionally, the purpose of marriage was division of labor and child rearing rather than

an hedonic marriage and affinity on personality (Becker, 1973; Lundberg, 2012). While it

seems plausible to assume that in traditional marriages education was the main attribute

driving marital surplus, the sexual revolution transformed the marriage market and its

institution toward hedonic marriages (Stevenson and Wolfers, 2007). Thus, we would expect

to find different returns in the marriage market using OLS and genetic-IV on a sample of

recently first-married couples. In other words, our empirical findings are only internally

valid, but the parsimonious approach combining genes with a structural model described in

this paper is externally valid, and hopefully will stimulate future research.

6 Conclusions

Our study illustrates how to combine quasi-experimental variation in the spouses’ char-

acteristics with parsimonious matching models so that the exclusion restriction can be in-

vestigated and, when satisfied, assortative mating can be assessed. In particular, this is

the first paper to present an IV strategy to estimate assortative mating on education using
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spousal genetic markers. While there is a burgeoning literature using genetic measures to

analyze own behavior (von Hinke Kessler Scholder et al., 2011), such as the returns to health

in schooling in the labor market, this often suffers from unconvincing exclusion restrictions,

especially when neurotransmitters genes are used (Cawley et al., 2011). Using a stochastic

linear bi-dimensional matching model, we are able to investigate whether the educational

polygenic score satisfies the exclusion restriction for both men and women in a matching

context. The validity of the exclusion restriction cannot be rejected for either the female or

the male polygenic scores of education. Interestingly, we cannot reject that the (estimated)

degree of assortative mating on education is the same using OLS and IV.

While our evidence is consistent with a positive causal effect of own’s education on

spousal’s education, future research should try to pin down the exact mechanism behind

the positive assortative mating in education: Will more educated wives become more likely

to encounter potential husbands that are more educated? And, or will more educated

wives become more attractive to more educated husbands, holding constant the likelihood

of meeting an educated spouse? In other words, is it search or preferences? These are

interesting questions that we leave for future research.
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Table 1. Summary statistics

N Mean SD Min Max

Husband’s Year of Birth 1,441 1937 8.87 1910 1957

Husband’s Years of Education 1,438 13.64 2.68 2 17

Husband’s College 1,441 0.35 0.48 0 1

Husband’s Education Polygenic Score (p-value< 1× 10−4) 1,435 0.21 0.97 -2.94 3.04

Wife’s Year of Birth 1,441 1939 8.85 1911 1961

Wife’s Years of Education 1,438 13.35 2.20 3 17

Wife’s College 1,441 0.24 0.43 0 1

Wife’s Education Polygenic Score (p-value< 1× 10−4) 1,429 0.20 0.96 -2.81 3.32

Source: Data are from the HRS (Rand, Version N).

Note: White non-Hispanic couples in their first marriage, with at most 10

years of age difference and born in the US.

Both spouses have been interviewed at least once and provided DNA sample.
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Table 3. Regressions of Wife’s Education on Husband’s Education controlling for Polygenic Scores

Measure of education Years of Education College

Wife’s Education Wife’s Education

(1) (2) (3) (4) (5) (6)

Husband’s Education 0.451*** 0.444*** 0.444*** 0.435*** 0.428*** 0.427***

(0.022) (0.022) (0.022) (0.024) (0.024) (0.024)

Wife’s Education Polygenic Score 0.190*** 0.190*** 0.036*** 0.036***

(0.051) (0.051) (0.010) (0.010)

Husband’s Education Polygenic Score 0.004 0.004

(0.054) (0.010)

Observations 1,417 1,417 1,417 1,423 1,423 1,423

R-squared 0.34 0.34 0.34 0.27 0.27 0.27

Note: All regressions include wife’s year of birth, wife’s place of birth dummy variables,

an indicator if the place of birth differs between spouses, and their respective genetic principal components.

Bootstrapped standard errors in parentheses.

*** p <0.01, ** p <0.05, * p <0.1
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Table 4. Regressions of Husband’s Education on Wife’s Education controlling for Polygenic Scores

Measure of education Years of Education College

Husband’s Education Husband’s Education

(1) (2) (3) (4) (5) (6)

Wife’s Education 0.663*** 0.648*** 0.643*** 0.547*** 0.535*** 0.532***

(0.028) (0.028) (0.028) (0.026) (0.026) (0.026)

Husband’s Education Polygenic Score 0.328*** 0.325*** 0.060*** 0.059***

(0.063) (0.063) (0.010) (0.010)

Wife’s Education Polygenic Score 0.085 0.012

(0.064) (0.012)

Observations 1,417 1,417 1,417 1,423 1,423 1,423

R-squared 0.34 0.36 0.36 0.27 0.28 0.28

Note: All regressions include husband’s year of birth, husband’s place of birth dummy variables,

an indicator if the place of birth differs between spouses, and their respective genetic principal components.

Bootstrapped standard errors in parentheses.

*** p <0.01, ** p <0.05, * p <0.1
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Table 5. Using the Husband’s Polygenic Score as an Instrumental Variable for Husband’s Education

Measure of education Years of Education College

Husband’s Education Wife’s Education Husband’s Education Wife’s Education

FS RF 2SLS FS RF 2SLS

(1) (2) (3) (4) (5) (6)

Husband’s Education 0.451*** 0.474***

(0.126) (0.136)

Wife’s Education Polygenic Score 0.284*** 0.316*** 0.187*** 0.039*** 0.053*** 0.034***

(0.072) (0.055) (0.061) (0.013) (0.011) (0.012)

Husband’s Education Polygenic Score 0.456*** 0.206*** 0.078*** 0.037***

(0.070) (0.061) (0.012) (0.012)

F -test instrument relevance 42.36 – – 44.25 – –

Hausman test p-value – – [0.948] – – [0.726]

Observations 1,417 1,417 1,417 1,423 1,423 1,423

Note: Control variables are described in Tables 3 and 4.

Bootstrapped standard errors in parentheses. Bootstrap Hausman test is reported.

*** p <0.01, ** p <0.05, * p <0.1
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Table 6. Using the Wife’s Polygenic Score as an Instrumental Variable for Wife’s Education

Measure of education Years of Education College

Wife’s Education Husband’s Education Wife’s Education Husband’s Education

FS RF 2SLS FS RF 2SLS

(1) (2) (3) (4) (5) (6)

Wife’s Education 0.925*** 0.759***

(0.232) (0.269)

Husband’s Education Polygenic Score 0.206*** 0.457*** 0.267** 0.035*** 0.078*** 0.051***

(0.062) (0.070) (0.080) (0.012) (0.012) (0.015)

Wife’s Education Polygenic Score 0.302*** 0.280*** 0.053*** 0.040***

(0.054) (0.071) (0.012) (0.013)

F -test instrument relevance 31.21 – – 21.04 – –

Hausman test p-value – – [0.245] – – [0.357]

Observations 1,417 1,417 1,417 1,423 1,423 1,423

Note: Control variables are described in Tables 3 and 4.

Bootstrapped standard errors in parentheses. Bootstrap Hausman test is reported.

*** p <0.01, ** p <0.05, * p <0.1
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